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ABSTRACT (Continued)

solution is obtained/in a number of computer operations
proportional to NU 2 , where N is the number of data points

and the proportionalty constant is controlled by the desired
level of accuracy. Results are presented from two test cases,
using GEOS-3 radar altimeter data to estimate mean gravity
anomalies, which verify the efficiency and accuracy of the
algoritm.
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ABSTRACT

This report describes an algorithm for the
efficient computation of minimum-variance estimates
from large amounts of two-dimensional gravity data.
The method (called GEOFAST for "geodetic fast esti-
mation") is based on the fast Fourier transform and
takes advantage of the underlying structure of the
statistical models in the frequency domain. An ap-
proximate solution is obtained in a number of compu-
ter operations proportional to Nlog 2N, where N is

the number of data points and the proportionality
constant is controlled by the desired level of accu-
racy. Results are presented from two test cases,
using GEOS-3 radar altimeter data to estimate mean
gravity anomalies, which verify the efficiency and
accuracy of the algorithm.
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1. INTRODUCTION

Large amounts of surface gravity data now exist in

organizations such as the Department of Defense (DoD) Gravity

Library located at the Defense Mapping Agency Aerospace Center

(DMAAC). Present holdings are expected to increase substan-

tially in the future as data from other sophisticated sensor

technologies become available. Such sensors include satellite

radar altimeters, satellite-to-satellite tracking instrumenta-

tion, and airborne gravity gradiometers. For example, DMAAC

holdings of GEOS-3 satellite radar altimeter along-track geoid

heights were more than one million points in 1978 even after

smoothing to a 1 sec data rate (Ref. 3).

Many applications require an accurate estimation of

the earth's gravitational field from the existing partial-earth-

coverage gravity information. In particular, precise values

of the gravity disturbance vector are needed for the compensa-

tion of modern inertial guidance and navigation systems. An

attractive and widely-known technique is statistical minimum-

variance estimation (or "least-squares collocation"). This

method has optimal properties with respect to the assumed

models, and is easily adapted to a wide class of problems

(Refs. 9 and 17). The major inhibitor to the widespread appli-

( cation of optimal gravity data processing is the severe com-

puter time and storage demand when used with high-density

( gravity surveys.

This report describes an algorithm, GEOFAST, which pro-

vides a significant reduction in the computational cost of sta-

tistically optimal methods as applied to gravity data estimation.
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The concept exploits the special structure of gravity model

covariance functions, together with the computational efficiency

of the Fast Fourier Transform (Refs. 4 and 5), to achieve a

computational complexity of order Nlog2 N. The result is an

estimation technique which is suitable for processing very

large gravity databases. In contrast, standard methods have a

complexity of order N3 , and the best competing algorithm, due

to Levinson (Refs. 1, 14, 16, and 23), is of order N2 complex-

ity. For 1000 data points such methods are up to 100 times

more expensive than the present technique in terms of computer

time.

The basic frequency domain approach of Generalized

Wiener Filtering (Refs. 18 and 22) assumes planar data of infi-

nite extent, and results in low accuracy when truncated to

finite data sets. An extension to this method suitable for

finite track lengths in one-dimensional estimation was de-

scribed in Ref. 10. The error properties of the proposed

method were analyzed in detail and shown to be superior to the

basic technique, while retaining the same order of complexity.

This method, called GEOFAST for "geodetic fast estimation",

was refined and implemented using simulated along-track grav-

ity data with good results (Ref. 21). The algorithm has now

been extended to two-dimensions resulting in further refinement

and modification, while retaining its accuracy and efficiency

properties. A test plan was developed to evaluate the perform-

ance of GEOFAST using satellite radar altimeter data from

GEOS-3, and has been completed with good results.

This report is organized into four chapters and two

appendices. Chapter 2 describes the two-dimensional GEOFAST

*Complexity is the functional dependence of the number of
multiplications (hence computer time) on the number of data
points, N, for large N.
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algorithm in outline form with reference to the appendices for

details. Appendix A is a brief development of the mathemati-

cal theory underlying the one-dimensional version and is a

condensation of material in Ref. 10. Appendix B describes the

theory necessary to extend the method to two dimensions includ-

ing a definition of the relevant tensor concepts. The results

of two test case applications using GEOS-3 data are presented

in Chapter 3, together with performance evaluations. The last

chapter, Chapter 4, contains a short summary.

Ii
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2. THE GEOFAST ALGORITHM

2.1 FORMULATION OF THE PROBLEM

The GEOFAST algorithm was developed to provide an

efficient computational solution to the minimum-variance esti-

mation equations

SC" I z (2.1-1)= xz zz-

In geodetic work, this formula is commonly known as least-squares

collocation (Ref. 9 and 17). Here z is a data-vector of dimen-

sion N and Czz its auto-covariance matrix of dimension NxN.

The vector of estimates R is of dimension M, and C is the

cross-covariance matrix between x and z of dimension MxN. The

covariance Czz is generally modelled by an analytic function

with parameters fitted to global or local data, and includes

measurement noise. The cross-covariance Cxz is then analyti-

cally derived from Czz by using the physical relationship be-

tween the estimated quantities x and the observed quantities z

(Refs. 11, 13, and 24). The method is implicit since this re-

lationship does not appear explicitly via a measurement equation

of the form z = H x. Formally, the covariances are defined by

C = E{z zT , C = Efx z T (2.1-2)

4 where E is the expectation operator and both vectors are assumed

to have zero means.

Computer solution of Eq. 2.1-1 by standard techniques

involves on the order of N3 operations (such as multiplications

14



and additions) to obtain the intermediate vector

uC' z (2.1-3)
_zz

and on the order of MN operations to yield the estimates

R Cxz u (2.1-4)

This limits the feasible application of these methods to data

sets of a few hundred points at most, whereas thousands of

measurements are often available from such sensors as satel-

lite altimeters.

By making two assumptions and using frequency domain

techniques this workload can be reduced dramatically to the

order of Nlog 2N. First, let the data points z(O, ) be given

on a rectangular grid in the e, plane (Fig. 2.1-1). Second,

assume that the covariance between two data points is a func-

tion of relative position only. That is, the covariance func-

tion is shift-invariant (or a displacement kernel)

COV (0 1, 1)9 z(G2,0 2 ) ] = fzz(2-l' 02-01 )  (2.1-5)

Note that this assumption includes, but is not restricted to,

the case of isotropic models. Similar assumptions are made

for the cross-covariance and estimate points x(O,0), namely,

COV [X(el,4l), z(62 , 2)] f fxz(62-Ol, 02-01 )  (2.1-6)

where it is here assumed for simplicity that the estimates are

obtained on the same grid as the data.

The foregoing assumptions are not unduly restrictive

in practice as shown by the application to GEOS-3 data in Chap-

ter 3. Data given on a limited region of a spherical (or

15
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Figure 2.1-1 Data and Covariance Structure

ellipsoidal) surface may be mapped onto a plane with very lit-

tle distance distortion and then gridded. The shift invari-

ance assumption then corresponds to the common model of sta-

tionary statistics. The estimate grid may actually be any

translation (that is offset in altitude, latitude, and lon-

gitude) of the data grid. With a fast algorithm it is often

cheaper to compute estimates at all grid locations even if

only a subset is wanted.

The stated assumptions give to the estimation Eq.

2.1-1 a special structure which is exploited by the GEOFAST

algorithm. The natural form for the data is an n Ixn 2 matrix

Z = Z jk I zijk = z(60 +jAO, 0%+kAO) (2.1-7)

where j0,l,. . .,n1-I and k=0,l,.. .,n 2 -l1 corresponding to the

data grid (Fig. 2.1-1) with origin (60900) and mesh size (AO,
. The total number of grid points is N = n1n2 . The data

matrix Z is put in vector form z by listing its elements in

16



row-by-row order. With this convention the NxN covariance

matrix Czz assumes a block structure (see Appendix B)

T O0 T 1  Tnl- 1

C zz

T (n1 -l) T( 2 ) T

in which there are nlxn I blocks and each block is of dimension

n2 xn2. The block matrix Tk is the cross-covariance between the

elements in two rows of Z which are k rows apart. This depends

only on k by shift-invariance. By the same argument each block

matrix is of the form

to  t1 tn2 -

t01  t1 tn2 -2
-l 0 n2-2

T = . .(2.1-9)

-(n2-l) t-(n 2 -2) to

The matrix C is said to be block Toeplitz with

Toeplitz blocks, or simply block Toeplitz. Note that Czz is

symmetric and is completely determined by its first block row

(or block column), whereas the blocks (except T0 ) are not sym-

metric and are determined by their first row and column. Alto-

gether, the definition of Czz requires less than 2nln 2 = 2N pa-

rameters. The structure of Cxz is the same except that symmetry

does not hold in general, so that approximately 4N parameters

are needed to define it. In summary, the geodetic estimation

problem is equivalent to the inversion and multiplication of

block Toeplitz matrices.

17



2.2 OUTLINE OF THE ALGORITHM

The GEOFAST algorithm achieves its efficiency by trans-

forming the estimation equations into the frequency domain where

an accurate approximation can be made to reduce the workload.

The transformation is accomplished with the Fast Fourier Trans-

form (FFT) which requires on the order of Nlog2 N operations.

The transformed covariance matrices are closely approximated

by (block) banded matrices resulting in a solution workload of

order N. A simple trade-off between approximation accuracy and

computer workload is controllable by choice of the bandwidth.

A simplified flow chart of the algorithm is shown in

Fig. 2.2-1. Input to the computation consists of the nlxn 2 data

matrix Z, together with the definition of the covariance matrices

Cxz, Czz. As seen in Eqs. 2.1-8 and 2.1-9, each covariance can

be specified by 4n1 n2 parameters which are naturally arranged

as a 2nlx2n2 correlation matrix. Specifically, let the Toeplitz

matrix T in Eq. 2.1-9 be represented by the column vector

S= 0, t_ (n2. )  ... t -1 9 to , t1 ,  ...,I t n2

(2.2-1)

of dimension 2n2 . Then each block matrix Tk in Eq. 2.1-8 can

be represented by a vector tk' and the matrix Czz by the 2n1x2n 2

matrix

-t 1  0 ,

T I I I I I

(2.2-2)

*Superscript T is used throughout this report to denote the
transpose operator. When not a superscript, T is used to de-
note a Toeplitz matrix without causing ambiguity.

18
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Figure 2.2-1 Two-Dimensional GEOFAST Algorithm

For the symmetric case (Czz), only half of the matrix Tzz is

required with tk tk . Total computer storage for input is

of order N = n 1 n 2 .

2.2.1 Transformation to the Frequency Domain

The first stage of the algorithm is the transformation

of the inputs to the frequency domain. The FFT is simply an

efficient implementation of the complex Discrete Fourier Trans-

form (DFT) which is defined in two dimensions by

- ~ I Z~ exp 1-2ni (Pi+ nI--) (2.2-3)
q~ ~ n n2  j 1 n

rpq j=O k=O

Since the estimation equations, Eq. 2.1-1, are in terms of the

data vector z it is convenient to express Eq. 2.2-3 in the

equivalent matrix form,

*The symbol i denotes the imaginary unit 1.

19



z' F z (2.2-4)

The NxN complex two-dimensional DFT matrix F has a special

structure which is discussed further in Appendix B. The vec-

tor z' in Eq. 2.2-4 is the complex representation of the data

vector z in a finite Fourier series of complex exponentials.

Since real quantities are more convenient to deal with in a

computer, a further transformation to a sine and cosine series

is performed by combining real and imaginary parts. This cor-

responds to the matrix operations (redefining z')

z' = H F z (2.2-5)

where H is a very sparse complex NxN matrix. The product HF

is, of course, a real matrix.

Finally, the accuracy of the banded approximation,

which is essential for the success of the algorithm, is criti-

cally enhanced by the introduction of a data window. In matrix

form this becomes (redefining z' again)

z' = H F W z (2.2-6)

where W is a real NxN diagonal matrix. That is, each data value

Zjk is multiplied by a scalar weight wJk before applying the DFT.

This windowing compensates for the finite extent of the data grid

in a manner explained in Appendix A. A representative window

function in two dimensions would be a gaussian probability den-

sity which is peaked at the center and tapered toward the edges

of the data grid. In GEOFAST,an optimal one-dimensional window

W derived by Kaiser (Ref. 15) is used to form a product window

Wjk = (w)( w ) (Fig. 2.2-2). The combined data transformation

in Eq. 2.2-6 can be implemented in order Nlog 2N operations

since multiplication by H and W are both order N.

20
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Figure 2.2-2 Product Window Definition

Corresponding to the frequency domain data vector z'

(consisting of Fourier coefficients) is the auto-covariance

matrix

C' = EIl'(z') T (H F W) Czz (H F W)T (2.2-7)

Similarly, introducing the transformed estimates

RI =(H F (2.2-8)

leads to the cross-covariance matrix

C' E{x'(z') T (H F W) C (H F W) T (2.2-9)

A straightforward row and column implementation of Eqs. 2.2-7

and 2.2-9 would result in an order N2 log2 N algorithm. This is

avoided by replacing C' and C' by their banded approximations,xz zz
and calculating only those elements within the retained bands.

If the number of bands in the one dimensional window is mB this

21
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reduces the workload to the order of m2Nlog 2N, where for typi-

cal applications mB is small and independent of N. The scheme

used to compute C' and C' bandwise is derived in Appendices

A and B, and is an essential part of the GEOFAST algorithm.

2.2.2 Solution of the Estimation Equations

The preceding transformations constitute the first

stage of the calculation (Fig. 2.2-1). Note that storage re-

quirements for the covariances are of order m2 N. The second

stage consists of the solution of the estimation equations in

the frequency domain. The estimation equations in the trans-

formed variables become simply

R' = Cz(Cz- zi (2.2-10)

coupled with the inverse of Eq. 2.2-8

R = (H F W) " 1 R' (2.2-11)

It is easily verified that the solution of Eqs. 2.2-10 and

2.2-11 is identical to the solution of Eq. 2.2-1. As before,

the equations are solved in two steps

u' = (Cz ) z' (2.2-12)

k' = C' u, (2.2-13)

Since C' is banded, the multiplication in Eq. 2.2-13 requiresXZ 2n
only on the order of m2N operations.

However, analysis of Lhe solution of Eq. 2.2-12 is

more complicated. It is shown in Appendix B that the block

22



Toeplitz structure of Czz in Eq. 2.1-8 gives rise to a corre-

sponding block-banded structure for C' in which the blockszz

are also banded (Fig. 2.2-3). There is an essential differ-

ence between this structure and the simple band structure of a

diagonal block which is the one-dimensional analogue of C'zz
In the one-dimensional problem,the symmetric band matrix C'

2 zz
can be inverted in order mBn operations by the standard Cholesky

technique (Refs. 6 and 12), where n is the matrix dimension and

m the number of superdiagonal bands. When the Cholesky tech-

nique is applied to the block-banded structure of the two-

dimensional problem, the internal banding within the blocks is

lost during the calculation. This difficulty is known as

"fill-in". The result is an effective bandwidth of mBn2 , where

mB is now the number of blockbands of size n2xn2 , and a work-

load of order (mBn2 ) (n1n2 ). Assuming n1 = n2 gives an order

of effort proportional to nrather than N.

Figure 2.2-3 Block Banded Structure

An order N algorithm for the solution of Eq. 2.2-12

can be developed by using an iterative method based on a special

23
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class of covariance matrices. This special type of covariance

structure is termed separable and is characterized by a covar-

iance function in Eq. 2.1-5 of the form

f zz(02-01, 102-01) = fI(e 2 -e1 ) f2 (02 -01 ) (2.2-14)

This class of functions is not general enough to include the

statistical models required for gravimetric applications, but

it can serve as an approximation for use in an iterative method.

It is shown in Appendix B that for a separable covariance ma-

trix Eq. 2.2-12 "factors" into two one-dimensional matrix equa-

tions of the form

V= (C,)- 1(Z)T (2.2-15)

U' (Cj)-1(V')T (2.2-16)

where Ci t C' correspond to fl, f2 and are square band matrices

of dimension nI , n2 . The matrices Z' and U' are both of dimen-

sion n1 n2 , and are equivalent to the vectors z' and u' when

their elements are listed in row-by-row order. If the band-

width of the matrix C' is mB, then Eq. 2.2-15 can be solved by

the Cholesky method in order mBn 2 (mB+nl) operations. Assuming

n1 = n2, the total workload for both equations is thus of order

mBN in the separable case.

The iterative solution of Eq. 2.2-12 in the non-

separable case proceeds as follows. Choose the matrix D' as a

separable approximation to C' (which may be done in a natural
zz

way) and define the matrix E' by

C' = D' + E' (2.2-17)zz

24



The matrix E' will be block-banded since both C' and D' are.zz
The estimation equation can now be written implicitly

u' = (D')-I  [z' - E'u'] (2.2-18)

or in recursive form

u'(k+l) = (D')" [1 ' - E'u'(k)] (2.2-19)

where k indicates the iteration number and u'(0) is any con-

venient initial solution.

Since both the inversion and multiplication in Eq.

2.2-19 require on the order of N operations, so does one step

of the iteration. If the number of steps, ms, necessary for

convergence of the iteration is independent of N and small

enough, the total workload to solve Eq. 2.2-12 is of order N.

It can be shown that the rate of convergence depends on the

norm of the matrix (D') 1 E' which will be small if the separa-

ble approximation is a good one. Furthermore, a simple modi-

fication to the iteration guarantees convergence for any posi-

tive definite matrix D'. The convergence properties of the

iterative technique, Eq. 2.2-19, and the appropriate choice

of the approximating matrix D' are discussed in Appendix B.

The solution of the estimation equations in the fre-

quency domain completes the second stage of the GEOFAST algo-

rithm (Fig. 2.2-1). The third stage consists of the inverse

transformation back to the space domain (Eq. 2.2-11). Since W

is a diagonal matrix, its inverse is an order N operation. The

complex DFT matrix F can be inverted in order Nlog 2N operations

by means of the inverse FFT, while the inverse of the matrix H

can be obtained analytically and has the same sparse structure

as H itself. Thus the final stage has a workload dominated by

NIog2 N.

25
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The computer time and storage requirements for the

GEOFAST algorithm are summarized in Table 2.2-1. The numbers

given are asymptotic estimates, valid for large N, and do not

include multiplicative factors independent of N except for mB

and m s. For repeated application of the algorithm with the

same covariance model, the matrices C' and C' can be stored,

reducing the time requirement to the order of Nlog 2N for each

application to a new data set.

TABLE 2.2-1

COMPUTER TIME AND STORAGE REQUIREMENTS

ASYMPTOTIC ORDER OF MAGNITUDE
ALGORITHM

STAGE TIME STORAGE

1: Input m2 Nl N m2N
Transforms 10o2  B

2: Estimation msm2N mBN
Equations

3: Output Nl N N
Transform

Full Solution m2 Nl N m2N

N = Total number of data points

m B = Bandwidth in one dimension

m = Number of steps for convergence

26



3. APPLICATION TO GEOS-3 DATA

In order to evaluate the GEOFAST technique a Test

Plan was developed in coordination with DMAAC. The objectives

of the plan were to test the effectiveness of GEOFAST when

applied to gravity survey data and to compare accuracy and

efficiency with existing DMAAC methods. It was decided that

GEOS-3 satellite altimeter data would be a natural choice for

the test plan since a large data set existed, and computer

processing time is a critical parameter in the ability to

utilize such information in an optimal manner.

A 20 deg by 20 deg area in the Atlantic was chosen

from which to process GEOS-3 data. The test area, bounded by

17 deg and 37 deg N latitude and 285 deg and 305 deg E longi-

tude (Fig. 3-1) includes Bermuda and Puerto Rico. Much of the

GEOS-3 calibration area is also included so that the track

density is relatively high. The geoid heights derived from

the altimeter measurements were then used to estimate mean

gravity anomalies. The implementation of the test plan re-

sulted in the two test cases described below.

The computer program used to generate the test case

results differed in some aspects from the algorithm described

in Chapter 2. The test program utilized a preliminary version

of GEOFAST in which the iterative scheme of Section 2.2.2 was

not operational. An alternative approach was implemented re-

quiring increased computer storage to achieve comparable accu-

racy and efficiency. A full implementation of the GEOFAST

algorithm is currently being developed, and will be subjected

to the same test plan when available.
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3.1 TEST CASE NO. I

Basic data for this test case were the 1 deg gridded

geoid heights derived by DMAAC (Ref. 3) with an estimated accu-

racy of approximately 1 m. Mean gravity anomaly estimates

were obtained on the same I deg grid for the central 10 deg by

10 deg square of the test area. Three different algorithms

were used to obtain the estimates: GEOFAST, Spatial Colloca-

tion, and Inverse Stokes (Ref. 9), the latter two being tech-

niques in use at DMAAC. All algorithms used exactly the same

input data so that comparisons could be made, and in the case

()f GEOFAST and Spat ial Collocation the same DMAAC-developed

co-variances were used.

Two transformations were applied to the basic data to

prodluce the input data for the algorithms. First, a global
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spherical harmonic expansion of the geoidal undulation to de-

gree and order 12 was subtracted from the GEOS-3 geoid heights.

These are termed residual GEOS-3 geoid heights and are contour-

plotted in Fig. 3.1-1(a). Second, a "template" approach was

used to generate the estimates. That is, the 10 deg by 10 deg

square for which the mean gravity anomalies are desired was

subdivided into four 5 deg by 5 deg subregions (Fig. 3.1-2).

Within each subregion, only the surrounding 15 deg by 15 deg

square of data was used in forming the estimates* (Fig. 3.1-3).

For each 15 deg square, the mean residual geoid height was com-

puted and subtracted from the data to remove bias. The resid-

ual mean gravity anomaly estimates were generated independently

by subregion and combined to yield estimates over the 10 deg

region. To these residual estimates, (Fig. 3.1-1(b)), the

spherical harmonic expansion of the (point) gravity anomaly to

degree and order 12 was added to obtain the final mean gravity

anomaly estimates.

In the statistical methods (GEOFAST and Spatial Col-

location), the covariances for the residual geoid heights and

residual mean gravity anomalies were obtained from the Tscherning-

Rapp model No. 4 (Ref. 24) with terms to degree and order 12

removed. The mean gravity anomalies were modeled as point

anomalies at 10.4 km altitude. (See Ref. 24 for a justifica-

tion of this approximation.) The resulting covariances are

displayed as a function of spherical distance in Fig. 3.1-4.

For an independent reference, the estimated mean grav-

ity anomalies were compared with values from the DoD Gravity

Library obtained by surface gravity surveys. This data base

is on a 5 min grid and was averaged over I deg squares to yield

comparison values. Statistics of the comparison are displayed

*For the Inverse Stokes method, only a 9 deg by 9 deg square

was used.
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in Table 3.1-1. The mean discrepancy is less than 1 mgal and

the standard deviation about 4 mgal. The distribution of the

differences closely approximates a normal distribution. It

should be emphasized that the observed differences include

four separate effects:

* Errors in GEOS-3 geoid height measure-

ments

* Incorrect statistical modeling

* Errors due to finite data extent and
discretization

* Errors in surface gravity survey Oata

Any errors introduced by approximations in the GEOFAST algo-

rithm itself are too small to be seen in this comparison (See

Ref. 21).

TABLE 3.1-1

STATISTICS OF THE DIFFERENCE BETWEEN GEOFAST MEAN
GRAVITY ANOMALY ESTIMATES AND SURFACE REFERENCE DATA

STANDARD MAXIMUM
REGION MEAN DEVIATION MAGNITUDE

(Fig. 3.1-2) (mgal) (mgal) (mgal)

100 x 100 0.6 4.1 11.7

A 1.3 2.8 6.7

B -3.1 3.1 -8.5
50 x 50

C 3.8 3.9 8.2

D 0.4 3.1 11.7

Comparisons were also made at DMAAC with estimates

from the other two methods in use. Table 3.1-2 summarizes
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TABLE 3.1-2

COMPARISONS BETWEEN ALGORITHMS

RMS DIFFERENCE GEOFAST SPACE INVERSE SURFACE

(mgal) COLLOCATION STOKES DATA

GEOFAST - 1.8 3.6 4.2

SPACE 3.1 3.5
COLLOCATION

INVERSE - 3.5
STOKES

these results, including a comparison between each algorithm

and surface data. Space Collocation and Inverse Stokes both

agreed slightly better with the surface reference than GEOFAST

(3.5 versus 4.2 mgal), but differed from each other by almost

the same amount (3.1 mgal). GEOFAST differed from Space Col-

location by less than 2 mgal. Although these two methods are

based on the same assumptions, there was one known discrepancy

in this test case. The GEOFAST covariance construction ignored

the fact that the E-W distance between grid points decreases

with increasing latitude, instead using an average distance

valid at 27 deg N latitude. This introduces an error of 5-10%

which could account for up to 1 mgal rms difference. This

source of error was avoided on the second test case by using a

different construction (Section 3.2).

Overall, the results verified the accuracy of the
GEOFAST estimates and the suitability of the method for possi-

ble use with GEOS-3 geoid height data. The relatively small

size of this first test case (N=225) did not admit meaningful

timing and efficiency comparisons to be made.
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3.2 TEST CASE NO. 2

The objective of this test case was to demonstrate

the ability of GEOFAST to process high density along-track

data. Accordingly, the database for the second test case was

the GEOS-3 adjusted along-track point geoid height library

*(Ref. 3). This data has been smoothed along-track to a 1 sec

(7 km) spacing, and adjusted to minimize track crossing dis-

agreement. Data contained in the same 20 deg by 20 deg square

used in Test Case No. 1 were obtained from DMAAC and amounted

to about 90,000 points. This was the base data from which the

1 deg grid values were obtained for the previous case. Resid-

ual geoid heights were obtained as before by subtracting a

spherical harmonic expansion to degree and order 12. This

reference geoid was computed on a 30 min grid and all data

points within a single grid square were compensated identi-

cally.

A transformation of coordinates was made in order to

obtain gridded data for the GEOFAST algorithm in which the

distance between points is constant in both directions. A

Lambert projection (Ref. 7) was used to map a spherical cap of

15 deg radius centered on the test area, onto a circular disc

in the plane. The spherical coordinates of latitude (*) and

longitude (A) were thereby mapped into cartesian coordinates

(x,y) in such a way that distance distortion was minimized.

The equations of this transformation are

i 0 -Cos 0 Cos X0 sin A 0 0 cos * cos
= 1 0 -sin A0  cosX 0  0 cos sinAILo * o oil

(3.2-1)
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= = p = 1- (3.2-2)

where 0 = 27 deg and A0 = 295 deg, and result in less than

0.5% distance distortion for a 15 deg cap. The mapping is

displayed graphically in Fig. 3.2-1, where x and y are meas-

ured east and north, in degrees of great circle distance, from

the origin at 27 deg N latitude and 295 deg E longitude. The

data were then further restricted to a 15 deg by 15 deg square

in the plane whose exact location was determined by the avail-

ability of surface reference data. Figure 3.2-2 shows the

reduced region with the origin shifted to coincide with x=-8,

y=-6 in Fig. 3.2-1. The mean residual geoid height over this

region was subtracted from the data to remove bias.

The second test case was split into two subcases for

purposes of timing and accuracy comparisons. These were

" Case 2A: 1 deg by 1 deg grid (N=225)

" Case 2B: 30 min by 30 min grid (N=900)

where N represents the total number of grid points in the 15

deg square. The gridded geoid heights were obtained by simple

averaging with respect to x,y coordinates.

The gridded data thus obtained was processed by GEOFAST

(in a single computation) to produce residual mean gravity

anomalies at the same grid points as the residual geoid heights.

The model covariance functions were the same as those used in

the first test case (Fig. 3.1-4). For surface reference data

the 5 min gravity library anomalies were reduced by the spher-

ical harmonic model to degree and order twelve, and then mapped

onto a plane and gridded in exactly the same manner as the

GEOS-3 data. Although in practice the mean gravity anomaly
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m

estimtates would be mapped back to latitude and longitude co-

ordinates, this was not required for the present purposes.

The residual GEOS-3 geoid heights for both grid spac-

ings (1 deg and 30 -'n) are shown in Fig. 3.2-3, and the GEOFAST

residual mean gravity anomaly estimates are shown in Fig. 3.2-4.

The increased resolution at the higher density is apparent,

particularly in the region near Bermuda and in the Bahamas.

The estimates were differenced with the surface reference re-

sidual anomalies and the statistics of this comparison are

given in Tables 3.2-1 and 3.2-2. Three concentric square re-

gions were considered: the central 5 deg square, the central

10 deg square, and the 15 deg square. As expected the accuracy

of the estimates decreased toward the edge of the finite data

base. The mean difference in all cases was less than I mgal.

The difference standard deviation of 3.2 mgal for the

5 deg region with the 1 deg grid agreed closely with the result

from Test Case No. 1. This increased to only 4.1 mgal with the

30 min grid, whereas theory predicts a rN dependence for a fac-

tor of two increase. Over the 15 deg region the values were

7.5 mgal and 10.7 mgal, respectively, which is an increase of

about 40%. Maximum differences were dominated by the presence

of Bermuda which is not adequately modeled in the covariance

structure. Even so, this singularity is estimated with much

sharper definition at the higher density grid. Also noteworthy

is the good accuracy obtained with gridding by simple averaging,

although this property depends on the smoothness of the data.

The geographical distribution of the differences between sur-

face data and GEOFAST estimates was also analyzed. Some of

the difference, although clearly not all, at the lower and

upper boundaries in Case 2B appears to be due to GEOFAST edge

error (See Ref. 21).
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TABLE 3.2-1

DIFFERENCES BETWEEN GEOFAST MEAN GRAVITY ANOMALY ESTIMATES
AND SURFACE REFERENCE DATA FOR CASE 2A (1 deg GRID)

REGION MEAN STANDARD MAXIMUM
(CENTERED) (mgal) DEVIATION MAGNITUDE

(mgal) (mgal)

50x50 -0.3 3.2 6.3

10xi0o 0.2 5.0 28.6*

150x15o 0.8 7.5 28.6*

Maximum occurs at the Bermuda rise.

TABLE 3.2-2

DIFFERENCES BETWEEN GEOFAST MEAN GRAVITY ANOMALY ESTIMATES
AND SURFACE REFERENCE DATA FOR CASE 2B (30 md'n GRID)

REGION MEAN STANDARD MAXIMUM
(CENTERED) (mgal) DEVIATION MAGNITUDE

(mgal) (mgal)

50x50 -0.4 4.1 15.6

10Ox100 0.1 8.8 136.

15ix15 0.7 10.7 136.

Maximum occurs at the Bermuda rise.

With two different grids, computer time comparisons can

be made (Table 3.2-3). As indicated, the computer time used in

pre-processing to obtain gridded data was modest and nearly the

same for both grids. The total time used by the GEOFAST algo-

rithm increased by a factor of about six when the number of

grid points increased by a factor of four. The analysis in

Section 2 predicts an asymptotic Nlog2 N dependence which would
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TABLE 3.2-3

GEOFAST ALGORITHM COMPUTATIONAL EFFICIENCY

TIME ON IBM 370 (min)

STAGE CASE 2A CASE 2B

(N=225) (N=900)

PRE-PROCESSING <2 <2

TRANSFORM COVARIANCES -1 -5

COMPUTE ESTIMATES -1 -7

TOTAL GEOFAST -2 -12

result in a ratio of about five. Considering the relatively

small size of N this is acceptable agreement. The required

time to compute 900 estimates was 12 min on an IBM 370/3033

computer, and would correspond to less than 2 min on a CDC

7600. The results of this test justify the conclusion that

the GEOFAST algorithm has the ability to process high density

data with modest pre-processing, and to produce high resolu-

tion estimates of good quality with considerable efficiency.

*Estimated time on a CDC 7600 computer is based on benchmark

testing conducted by the author.
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4. SUMMARY

An algorithm has been presented which allows the

rapid calculation of minimum-variance estimates from high-

density gravity data. The GEOFAST method uses frequency do-

main techniques to achieve a complexity of order Nlog 2N where

N is the number of data points. This efficiency is obtained

by exploiting two structures commonly found in gravimetric

applications:

0 Input data that is regularly spaced on a
cartesian grid (after pre-processing)

* Statistical covariance models that are
stationary (or shift-invariant).

The resulting algorithm has been implemented in two-dimensions

and is well suited to the processing of very large gravity

data bases. A balance between accuracy and computer time may

be controlled by the choice of design parameters.

The GEOFAST algorithm has been used to estimate mean

gravity anomalies from about 90,000 GEOS-3 geoid height values

suitably gridded to 900 points on a 15 deg square at a 30 min

resolution (Fig. 4-1). Agreement with surface gravity data

was relatively good and computer running time verified the

theoretical bounds. It is possible to extend the algorithm

further so that the two basic assumptions need hold only approx-

imately, thus considerably enhancing the range of application.
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APPENDIX A

GEOFAST: ONE-DIMENSIONAL THEORY

This appendix presents a brief development of the

mathematical theory underlying the one-dimensional GEOFAST

algorithm. The material is condensed from Ref. 10, where fur-

ther details may be found, and is included here for complete-

ness. Some familiarity with these results is required for an

understanding of the two-dimensional theory discussed in

Appendix B.

A.1 TOEPLITZ AND CIRCULANT MATRICES

Toeplitz matrices are a class of nxn, real-valued

matrices which includes the covariance matrices from station-

ary random processes. More formally, a matrix T is of the

Toeplitz type if there is a real-valued function, t., such

that the elements of T obey

[T]jk = tk-j 0 < j, k < n-i (A.1-1)

A Toeplitz matrix is defined by its first row and column since

IT]Ij+lk+l = IT'jk. If T is an autocovariance or a cross-co-

variance matrix, then tk is the corresponding covariance func-

tion. The matrix T is symmetric if the function t. is even.

Circulant matrices are a subset of Toeplitz matrices

with an especially simple form under Fourier transformation.

A Toeplitz matrix is a circulant if the function t2 obeys
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t_ 2 t£ = 1, , n-i (A.1-2)

A circulant matrix is defined by its first row since each row

is equal to the row preceding it shifted one element to the

right, with the last element "wrapped around" to the first

place. For example, a circulant matrix with the first row

(cO l cl, .... Cn-i ) necessarily has its second row given by

(cnI, c0 , cl, ... , Cn 2 ). While circulant matrices them-

selves do not appear frequently, their properties are useful

in dealing with the more general Toeplitz matrices.

Circulant matrices have the special property that

they are diagonalized by the Discrete Fourier Transformation

(DFT). The n-point DFT matrix F is the nxn, symmetric, uni-

tary, complex-valued matrix whose elements are

[F]jk - 1 exp [2nik 0 < j, k <_ n-I (A.1-3)

and its inverse is easily seen to be Ft., The DFT of an n-vector

of complex numbers, x, is defined by the relations (Ref. 9)

x' = F x, x = F x' (A.I-4)

The matrix similarity transformation corresponding to Eq.

A.1-4 is given by

C' = F C Ft (A.1-5)

where C is an nxn matrix of complex numbers and C' is its rep-

resentation in the Fourier transform domain. The usefulness

of the circulant matrix definition depends largely on the fol-

lowing result.
*The symbol i denotes JT, and the superscript (T) denotes the

complex conjugate transpose.
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The Fourier transformation, Eq. A.1-5, of any circulant

matrix C is the diagonal matrix

C' = diag(c , .. . , c' ) (A.1-6)

where c' is the discrete power spectrum

c =rn F Ft c (A.I-7)

and c corresponds to the first row of C. Moreover, any diagonal

matrix is the Fourier transform of a circulant matrix, defined

by Eqs. A.1-6 and A.1-7. If the matrix C is symmetric the in-

verse transform Ft may be replaced by F in Eq. A.1-7. A proof

of this result may be found in Refs. 2 and 4. This theorem is

also equivalent to the well known relationship between discrete

convolutions and discrete Fourier transforms proved in Ref.

20.

Since circulant matrices are diagonalized by the DFT

they can be multiplied or inverted in order nlog2 n operations.

Specifically, if

Y = C x (A.1-8)

then

Y' = C' x' = diag(c') x' (A.1-9)

where x' and y' are defined as in Eq. A.1-4 and c' in Eq.

A.I-7. It follows that

y! = c'.x' , x = y!/c! (A.1-10)

so that either y or x can be found with two FFT's, n scalar

multiplications, and one inverse FFT. The matrix multiplication
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in Eq. A.l-8 is also equivalent to the circular convolution

n-i

yj= ck j xj (A.l-ll)

k=o

so that fast multiplication is the same as fast convolution.

A.2 THE TRANSFORM OF A WINDOWED TOEPLITZ MATRIX

This section describes the calculation of the Fourier
transform of a "windowed" Toeplitz matrix. An algorithm to

accomplish this for a single superdiagonal band in approxi-

mately nlogn computer operations is derived here from the

result of Section A.l. A windowed Toeplitz matrix is one

which has been multiplied by a diagonal matrix, W, to form

U = W T W (A.2-1)

The matrix W is defined by a window function, w., such that

W = diag(w 0 , w P.... $ Wn 1 )  (A.2-2)

The window function is related to the way in which data is

processed, and is described in the next section. For a gen-

eral discussion of window functions in frequency domain data

processing, see Refs. 8 and 19. Note that one choice for W is

simply W = I where I is the nxn identity matrix. Thus, the

class of windowed Toeplitz matrices includes all Toeplitz
mat rices.

The DFT of the windowed Toeplitz matrix in Eq. A.2-1

is
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T'= F W T W Ft (A.2-3)

The work of deriving a useful element-by-element expression

for this matrix is divided into two parts: first, obtaining

an expression for T' in terms of transforms of diagonal and

circulant matrices and, second, applying the circulant theorem

of Section A.1 to deduce an efficient computational formula.

The matrix T is extended to a 2nx2n circulant matrix

T by the definitions

jk k-j 0 < j, k < 2n-1 (A.2-4)

where

t 0 < I <n-i

C =2 = n (A.2-5)

t -2 n+l < I < 2n-i

and c.- = C2n.£ for 1 < £ < 2n-1. The matrix T has the parti-

tioned form

[ R] (A.2-6)

where R is a Toeplitz matrix corresponding to the function

ti- n  k > 0

= 1(t + t- ) 2 =  0 (A.2-7)

2 t+n 2 < 0

Also a 2nx2n extended version of W is defined by
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T w ] (A.2-8)

0 0

The windowed Toeplitz matrix WTW may now be expressed

in terms of the diagonal matrix W and the circulant matrix T by

EWTW 01
W WTW (A.2-9)

0 0

Introducing the nx2n sampling matrix S defined by

1 0 ... 0

0 0 1 0

S =(A.2-10)

0 1 0 -

it may be verified that

T'= S F t T WFST (A.2-11)

where V is the 2nx2n Discrete Fourier Transformation defined

by Eq. A.1-3 with n replaced by 2n. Equation A.2-11 expresses

T' as the result of sampling every other row and column of a

matrix which is the transform of a product of diagonal window

matrices and a circulant matrix.

The application of the circulant properties stated in

Section A.1 produces the desired expression for T'. Equation

A.2-11 may be written as

T' = S W'T'W'ST (A.2-12)
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3

where W' and ' are the transformed matrices

f t, (A.2-13)

= F(A.2-14)

Using Eqs. A.1-5 and A.1-7 with F replaced by Ft

shows that the first of these matrices is a circulant, with

the elements

[W'lik = Qk-j' 0 _< j, k < 2n-l (A.2-15)

where 0 is given by the transform

%0 Ql'..' 2 T = Q (A.2-16)0 il'"'' 2n-1 : f-  -,/ 0

and w is the n-vector defined by the window function

w (w0, w1 9 . . .Wn 1 T (A.2-17)

It also follows directly from Eqs. A.1-5 and A.1-7

that the matrix t' of Eq. A.2-14 is diagonal, of the form

T diag ( ' T, ... I 2n-1 )  (A.2-18)

where -t (0'9 T1' ... , 92n-1) T is defined by the vector c of

Eq. A.2-5 via

T = 12 F c (A.2-19)

A useful element-by-element formula for T' is a con-

sequence of Eq. A.2-12. Substitution of the definitions from
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Eqs. A.2-10, A.2-15, and A.2-18, with some simplification,

produces the expression

2n-1

[T']jk= E - Q2 ' (A.2-20)

k=0

where 0 is the transform of the window function (Eq. A.2-16)

and T2 is the power spectrum of t (Eq. A.2-19). The sub-

scripts in Eq. A.2-20 are interpreted modulo 2n. In partic-

ular the elements of the m superdiagonal band of T' can be

written (for 0 < j < n-m-i)

2n-1

IT' =jm + pi_2j (m) T2 (A.2-21)
2=0

where

Pk(m) = 0 k Qk-2m (A.2-22)

Now Eq. A.2-21 can be recognized as a convolution, or alterna-

tively as the product of a circulant matrix and a vector (Sec-

tion A.1). As a result the band elements defined by Eq. A.2-21

can be computed in order nlog2 n operations.

A.3 WINDOWS AND BANDING

The impact of the window function on the structure of
T' can be seen from Eqs. A.2-21 and A.2-22. The elements of

the mth diagonal band are obtained by convolving the power

The symbol 0 represents the complex conjugate of the quan-

tity (2 Since W" is hermitian, ( : (,
k-j 2-k"
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spectrum T with the weighting function p£(m), which consists

of the transformed data window multiplied by its conjugate

shifted 2m elements to the right.

Two typical window functions and their transforms are
shown in Fig. A.3-1. These windows are special cases of the

Kaiser window function which has proved very useful in signal

processing applications, and is defined in Refs. 15 and 19.

Transforms of data windows are characterized by a mainlobe and

a series of sidelobes of considerably reduced levels. As can

be seen from the figure, the disparity between mainlobe and

sidelobe levels becomes more pronounced as the width of the

mainlobe is increased. This behavior is reflected in the nu-

merical structure of the matrix T'. The elements of T' corre-

sponding to the shaded area of Fig. A.3-2 cannot be neglected

because the mainlobes of Q and Q£-2m overlap for these ele-

ments. However, the elements of T' outside the shaded area of

the figure are the product of the sidelobes of OR together

with the power spectrum T When the sidelobes are made suf-

ficiently small, these elements may be neglected. The key

idea in the band-diagonal algorithm is the control of out-

of-band covariance elements by choice of a data window with

sufficiently small sidelobes.

A final transformation must be applied to form the

frequency domain covariance matrix into a band-diagonal struc-

ture. Because it is known that the data must always be real-

valued, the sine-cosine transform coefficients are sufficient

to describe the data, rather than the full, complex set of

Fourier coefficients. The practical importance of this last

transformation is the elimination of the elements in the upper

right and lower left corners of T' as shown in Fig. A.3-2.
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Figure A.3-1 Data Windows and Transforms
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M 5 .1 LLIwt M 1UROWS

Figure A.3-2 Structure of Covariance Matrix
Under Fourier Transformation

The transformation to sine-cosine coefficients corre-

sponds to modifying the complex transformation of Eq. A.2-3 to

the real form

T' = H F W T W F Ht (A.3-1)

where H is an nxn complex transformation from exponential

Fourier coefficients to sine-cosine coefficients. The ele-

ments of H are defined by

n _ n
2 1

---------- t----------------

2I I
I .

H __1 -r- (A. 3-2)

L * I .
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The first n/2+1 rows of H generate the cosine coefficients of

the data, while the last n/2-1 rows generate the sine coefficients.

The result of using the modified transformation (Eq.

A.3-1) in the definition of T' is shown in Fig. A.3-3. The

matrix T' may now be approximated by the real band-diagonal

matrix, D', neglecting the small elements due to the sidelobes

of Q V In addition the elements of D' may be partitioned into

blocks of dimension n/2+l and n/2-1 so that the dimension of

the largest system of equations to be solved is approximately

halved.

1-30300

Me - 1 COL406

M21 R1 R{OW

- -l ROWS

Figure A.3-3 Structure of Covariance Matrix Under
Sine-Cosine Transformation

A./4 APPROXIMATE SOLUTION OF TOEPLITZ EQUATIONS

The solution of the linear system

y Tx (A.4-1)
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can be obtained efficiently using the transformation of Eq.

A.3-1 when T is a symmetric Toeplitz matrix. If A = HFW and

Y' = A y , = AtX? (A.4-2)

then

Y' = T'x' , T' = A T At (A.4-3)

where T' is symmetric and has the structure in Fig. A.3-3.

This is a generalization of the circulant case where T' is

diagonal. An efficient aproximate solution to Eq. A.4-3 is

found by replacing the exact matrix T' by its banded approxi-

mation D'. The special structure of D' is exploited by employ-

ing the band-diagonal implementation of the Cholesky decompo-

sition algorithm (Ref. 6, Section 2.3) for the solution of

linear equations. The number of numerical operations required

is of order (mB+l)2 n for large n, where mB is the number of

superdiagonal bands.

The magnitude of the band approximation error can be

expressed by the quantity

& E(6x 6x)] 1/2 (A.4-4)

which is the relative rms error in the solution x to Eq. A.4-1

due to replacing T' by D' in Eq. A.4-3. The error in the

solution due to the neglected out-of-band elements in T' is

controlled by adjusting the matrix bandwidth mB through the

choice of the data window function defined in Section A.3.

Bounds on the computational error arising from this source

were computed in Ref. 1C and show that mB < 10 is sufficient

for most applications.
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There is, however, a penalty for the use of highly

tapered data windows (large mB). It can be shown that the

condition number K of the matrix T' satisfies (Ref. 6)

K(T') = Amax (T')/A min(T') _ Wo (A45)

where w is the smallest window coefficient and X(T') denotes0

an eigenvalue of the matrix T'. When K is large the matrix is

ill-conditioned and computing its inverse by the Cholesky meth-

od may fail due to the appearance of negative diagonal elements.

To compensate for ill-conditioning the equations A.4-3 are

modified by adding a small constant 6 to the diagonal so that

T' = A T At + 6 1 (A.4-6)

The modified problem is well-conditioned since A mi(T') > 6min
and K < Xmax (T')/6. By inverting the transformation (Eq. A.4-3)

the modified equations are found to be

Y = (T + 6 W 2 ) x (A.4-7)

where W is the diagonal window matrix.

When T is a covariance matrix Eq. A.4-7 may be inter-

preted as the addition of uncorrelated measurement noise to

the model. In the modified problem the quality of the data is

gradually de-emphasized as the ends of the data interval are

approached, and points for which the signal-to-noise ratio

Sk = toWk/6 (A.4-8)

is less than one, may be regarded as having been lost. The

percentage of data points for which Sk is less than one de-

fines a performance index, called "data de-emphasis," which is
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a function of 6 and mB. The results presented in Ref. 10 show

that a relative error of less than 1% may be achieved with a

data de-emphasis of less than 10% for typical applications.
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APPENDIX B

GEOFAST: TWO-DIMENSIONAL THEORY

This appendix extends the mathematical theory under-

lying the GEOFAST algorithm to two dimensions. Since a basic

understanding of the one-dimensional theory (Ref. 10) is re-

quired, the necessary results are developed in Appendix A.

Thus the two appendices taken together are self-contained.

B.l BLOCK CIRCULANT MATRICES AND KRONECKER PRODUCTS

The relationship between circulant matrices and the

Discrete Fourier Transform (DFT) is described in Appendix A.

The DFT matrix in one dimension is defined by

[F]Jk -- w , W = exp [n- (B.1-1)

where w is the complex n t h root of unity and n is the number

of points. A circulant matrix satisfies

[Cljk = ck-j(mod n) 0 < j,k < n-i (B.1-2)

and is defined by its first row "circulated". The significance

of these definitions is that any circulant matrix is diagonal-

ized by the DFT, that is,

C' = F C Ft = diag IFtc] (B.1-3)

*The symbol i denotes f "7 J and the superscript (M) denotes the
complex conjugate transpose.
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is a diagonal matrix (Refs. 2 and 4). This relationship ex-

tends to two dimensions with the appropriate definitions as
~shown below.

B.1.1 The DFT as a Kronecker Product

The DFT in two dimensions is defined by

n1 -1 n 2 -1

Slp1 w (B.1-4)
pqE E jk 'lp qw

p _n 2 j=o k=o

where zjk is an n1xn2 data matrix and w1 , w2 denote the com-

plex roots of unity

W 1 = exp [ lp n2 (B.1-5)

Analogous to the DFT matrix in Eq. B.1-1, the operator defined

by Eq. B.1-4 is a tensor of fourth rank whose components are

of the form apqik.

It is more convenient to represent the DFT in matrix

form by expressing Zik (row-wise) as a vector z, such that

z' = F z (B.1-6)

is equivalent to Eq. B.1-4. When this is done the n n2xn ln2
matrix F is seen to assume a simple block structure, namely,

-- !

fl1il F2  fl12 F2  1

F f 2 1 F2  fl 2 2 F2  (B.1-7)
---------------J-------------- L.........

-L.
! 1

! w



where F2 is the n2 -point DFT matrix defined by

[F2]jk = f 1 wjk (B.1-8)[Flj 2,jk 4-n -2 2

and similarly for FI. Each block in Eq. B.l-7 is of size n2xn2  t
and there are n1 blocks in each row and column. This special

structure is denoted by

F = F1 0 F2  (B.1-9)

and termed the Kronecker product of F1 and F2 (Ref. 2). Kronecker

products define a special class of tensors with the important
properties

(A® B)(C® D) = (AC® BD)

(A® B)t = (At® Bt) (B.1-1O)

(A® B)-I= (A-' 0 B-1 )

where the matrices A, C and B, D are assumed to be conformably

dimensioned.

For computational purposes it is convenient to eval-

uate the multiplication of a vector by a Kronecker product

matrix in terms of ordinary matrix operations. The two prod-

uct forms

y (A B) x
Y =A X BT  (B.1-11)

are equivalent if x, y are the row-by-row vector representations

of the matrices X, Y. It is assumed that A is n1 xn l , B is
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n2xn2 , and X, Y are nlxn 2. This equivalence can be derived

from the corresponding element-by-element formulas such as Eq.

B.1-4.

B.1.2 Diagonalization of Block Circulant Matrices

By a block circulant matrix (with circulant blocks)

is meant an n1n2 xn1 n2 matrix of the form

C0  : C1  , n
n1 -lI I I

- -I----- -----.------------

C ,: C 0 Cn -2 (B.l-12)
1- 2

- -1------I------4-----------
I I
I I

I I

C1  C 2  CO

where each of the n1 block matrices Ck is a circulant of dimen-

sion n2xn2. A special case of a block circulant matrix is the

Kronecker product of two circulants C1 , C2 of dimension n1 , n2

C = C1 ® C2  (B.1-13)

In this case Eqs. B.1-3, B.1-9 and B.1-10 show that

C' = F C Ft = (F1 C1 F1 )®D (F2 C2 F2 ) (B.1-14)

is a diagonal matrix. The diagonal entries of C' are of the

products of the diagonal entries of Ci, C,.

Of more interest is the fact that C' is diagonal for

any block circulant C. This theorem is derived below. Let P1

denote the primitive circulant matrix of dimension n
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0 1 0 0-
0 0 1 0

P1= (B.I-15)

0 0 0 1

The matrix P1 is orthogonal (P PT = I) and generates a cyclic1m1
group of order n

2 n ' P1 = 0 = I} (B.I-16)
{P1 9Pl P1  ,P = B.

since the kth power of P1 is a circulant whose first row is

the k th unit vector. Furthermore any block circulant matrix

may be represented as the sum

nl-1

C X (PlkC k (B.1-17)

k=o

where each Ck is an n2xn2 circulant (see Eq. B.1-12). The

theorem follows since

n -1

C' = F C Ft = 1 (F I P1 k FI )OD(F 2 Ck F2) (B.1-18)

k=o

and each factor in parentheses is the DFT of a circulant.

An explicit expression for the diagonal entries of C'k
can be obtained by reference to Eq. B.1-3. Since P1 is a
circulant whose first row is the k th unit vector, ek ' and C k

is a circulant with first row ck' it follows that
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F1 P kFt = dai4 Fte

11 1 iain 1 F1 eki

F1 Ck Ft = diagl.P 2 Ft cI (B.1-19)

Eq. B.1-18 then becomes

C' = diag[(jil FI®F 2 F2 )t c] (B.1-20)

where c is the first row of C, or equivalently

nl-i

C = e (B.1-21)

k=o

Note that these two-dimensional relations reduce to the one-

dimensional forms if n2 = 1, and also may be readily extended

to higher dimensions in a natural way.

The converse theorem is also needed, namely that the

DFT of a diagonal matrix D is a block circulant. Since any

n1 n2 -square diagonal matrix can be represented as

nl

D = I [diag(ek)] 0 [diag (dk)I (B.1-22)

k=o

where e is a unit vector of dimension n1 and dk is a vector

of dimension n2,

n1-1

C F Ft D F : IF1 diag(e)F 1 ] 0 IF2 diag(d) F2 ]

k=o (B.1-23)

The matrices in square brackets are circulants by virtue of

the one-dimensional theory (Appendix A). But. the Kronecker
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product of two circulants is block circulant, and this prop-

erty is preserved under addition. Since C is a block circu-

lant Eq. B.l-20 can be inverted to obtain

c F F2 d (B.1-24)
- n I n2

where D = diag(d). In particular if d = dl d2 then

C = C1 ® C2 with the obvious definitions.

Since block circulants are diagonalized by the DFT

they can be multiplied or inverted in order Nlog 2N operations

in complete analogy with the one-dimensional case (Appendix A).

If

Y C x (B.1-25)

then

Y' = diag(c') x' (B.1-26)

where prime denotes transform and c' is given by Eq. B.1-20.

Thus either x or y can be found with two FFT's, N scalar multi-

plications, and one inverse FFT.

The matrix multiplication in Eq. B.1-25 is also equiv-

alent to a two-dimensional circular convolution

nl n2 -1

Yjk F E Cpjqk Xpq (B.1-27)

p=o q=o

where X, Y are the matrix forms of x, y, and the elements cjk

form the vectors
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T = ,c0  c, . j ,n 2-. 1 (B.1-28)

which define the circulants C. in Eqs. B.1-12. In the specialJ
case that C = A®R B, with A and B circulant, 

Eq. B.-27 is

simplified 
to

n1-1 n2 -1

Yjk = E ap j y bq- k Xpq (B.1-29)
p=o q=o

which is a sequence of row and column convolutions (see Eq.

B.1-11).

B.2 THE TRANSFORM OF A WINDOWED BLOCK TOEPLITZ MATRIX

B.2.1 Matrix Representation of the Transform

A block Toeplitz matrix (with Toeplitz blocks) is an

nln2 xnln 2 matrix of the form (see Eq. B.1-12)

I I

T1 2 T12

T TT01 n 1 -1
I I

T0  , T (B.2-1)

I I

II I

T T T O

-(n- I) (n -2) 0

where each block Tk is a Toeplitz matrix of dimension n2xn 2.

Such matrices arise naturally as the covariance matrix of a

stationary process on a planar rectangular grid. A special

case, corresponding to a separable covariance function, is the

Kronecker product
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T Tl T -,lT 2  (B.2-2)

where T1 , T2 are Toeplitz of dmension nI , n2.

Toeplitz matrices in one dimension are discussed in

Appendix A, in particular the transform of a windowed n2xn2

Toeplitz matrix

T = F2 W2 T2 W2 F2t (B.2-3)

where W2 is a diagonal window matrix.

The development given in Section A.2 extends directly

to two dimensions. Define the nln 2xn1 n2 diagonal window matrix

W as the Kronecker product of two one-dimensional windows

W = W1 0 W2  (B.2-4)

This is a natural choice of window function on a rectangular

grid. The transform of a windowed block Toeplitz matrix anal-

ogous to Eq. B.2-3 is the nIn 2xn1 n2 matrix

Ta = F W T W Ft (B.2-5)

where T is defined in Eq. B.2-1, W in Eq. B.2-4 and F in Eq.

Extend each Toeplitz block Tk in Eq. B.2-1 to a 2n2x2n 2

circulant in the manner of Appendix A

Tk  Rk]
T k I-Rk k (B.2-6)

L k
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If the Toeplitz matrix Tk is defined by the vector

t_=i -(n 2_l)'. . t- l ,  to , tit ... t t n 2_11T (B 2 7

then Rk is the complementary Toeplitz matrix defined by

r = [t lq(n2- 1 +t n2 ) tn2 1 )' t n2- 1' ..., tl]T

(B.2-8)

Now extend T to a 4n1n2×xn1n 2 block circulant in the same manner

S= .(B.2-9)
R T

where T is the 2nIn 2 x2nIn 2 block Toeplitz matrix

0 1 n-I
1

T T_ I (B.2-10)

LT(nl-1)

and R is the complementary bl ck Tot.plitz matrix

( n_ ) + I T 1

R = T_(n (B.2-11)
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The extension of the window matrix and DFT to compat-
ible size (4n n2 ) is straightforward. That is,

= L= W1 I e2 (B.2-12)
0 0

where WP W 2 are one-dimensional extensions to size 2n1 , 2n2 ,

and

F = F 1  F2  (B.2-13)

where Fl, F2 are DFT's of size 2n1 , 2n2 . Thus Eq. B.2-5 can

be written

T= S F W T W' F ST (B.2-14)

where S is a two-dimensional sampling matrix

S = S 1 ®x S 2  (B.2-15)

formed from two sampling matrices as defined in Appendix A.

Finally,

T' = S W'T'W'T (B.2-16)

where the transformed matrices

W1 F W F* , T' F T F1  (B.2-17)

ar( block circulant and diagonal, respectively, by the theorems

of Section B.I.
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B.2.2 Efficient Calculation of the Transform

Equation B.2-16 is the direct analog of the one-dimen-

sional Eq. A.2-12, and can be used to exhibit an element-by-

element formula analogous to Eq. A.2-20. It is instructive to

express Eq. B.2-16 in terms of the underlying one-dimensional

transforms so that the one-dimensional theory can be applied.

This is especially easy when the covariance function is separ-

able, since then Eqs. B.2-2 and B.2-12 to B.2-15 show that the

computation "factors" completely to

T= T1 ' ® T 2' (B.2-18)

where

T ' = S1 WI 1'TI WI'S1 (B.2-9

is the one-dimensional transform of TI , and similarly for Ti.

Thus only two one-dimensional transforms are required in this

case, and their banded approximations may be calculated as

described in Appendix A in the order of mB(nllog2 nI + n2 1og 2 n2 )

operations.

In the non-separable case this factorization is only

partial in the sense that T' in Eq. B.2-16 does not factor into

a Kronecker product. However, T' is a diagonal matrix and can

be represented as a sum of products of diagonal matrices

= 2n-l 1 2n2 - i

E ) diag(e )I T (B.2-20)

p=o q=o

This assumes that both windows W, W2 have the same bandwidth,

m B which is not required.
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where e peq are pe nqth unit vectors of dimension 2nI , 2n2,

and T are the elements of a 2nlx2n2 matrix containing the

diagonal entries of T. Specifically, let T be the 4nln2 -

vector corresponding row-wise to Tjk" Then from Eq. B.1-20

T = [ I F® Thi 2 F2 t Z (B.2-21)

where Z is the first row of the circulant T constructed in

Eqs. B.2-6 to B.2-11. The vector c can be defined explicitly

in terms of the first row and column of T by Eq. B.2-1.

With the representation of Eq. B.2-20 the transform

Eq. B.2-16 becomes

2n I -1 2n 2 - 1

T' : 2"- l (A'® B') p (B.2-22)

p=o q=o

where

A' = S Wi diag(ep) Wi S ,p 1I -p 1'

(B.2-23)

B =S2 WS diag(eq) W4 S T

The calculation of A' and B' is quite simple since diag(ep) e eT
p q -p -p-p

implies that

A a at , a = S W' e (B.2-24)
p -p -p -p 1 -p

Note that F1 W1 F1 is herinitian so that ()= Wi.
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Furthermore, the matrix W is a circulant whose first row is

given by

-1 Pt [ (.225
-1 n_ 0o

so that the vectors a can all be computed with a single FFT.-p
Explicitly,

ajp = 'i]2jp = ol,p-2j (B.2-26)

where negative subscripts are interpreted modulo 2nI , and

[Ajk = ajp akp =Qlp2j 6l,p-2k (B.2-27)

where Q1, j is the complex conjugate of Qlj'

Since I is the transform of the window wi the matrix

A' is approximately banded with bandwidth mB (see Appendix A).P
The representation of Eq. B.2-22 then shows that the matrix T'

is approximated by a block-banded matrix (with banded blocks)

when A' and B' are replaced by their (one-dimensional) banded
p q

approximations. This follows from the fact that the Kronecker

product of banded matrices is block-banded (see Eq. B.1-7),

and that this property is preserved under addition. The total

number of non-zero elements in the block-banded form of T' is

less than (2mB+)2 N, and for each row j (0 < j < N-1) the band

elements occur in the columns j±m where m = mln 2 + m2 (0 <i m,

-. m2  mB ).

The elements of T' may be efficiently computed bandwise

as in the one-dimensional case. In fact if j = jln 2 + j 2 then
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2n-l 2n2 -1
IT' (ml -2 (m2)Tp
jT' 'j,j+m ap-2J 1  q 2 pq

p=o q=o

(B.2-28)

where 0 < l < nl- 0 < n2 - and

fk (M) = Ql, k  l1,k-2m ( . -9

Pk(m) = Q2,k 62,k-2m

The analogy with the one-dimensional formula is completed by

defining

P(m) = U(m1 ) 0 P(m2 ) (B.2-30)

so that

4n1 n 2 -l1

[T' 1j,j+m = >9_2 j(m) 1P (B.2-31)

2=O

where T is defined by Eq. (B.2-21). Equation B.2-28 can be

recognized as a convolution or circulant multiplication (see

Eq. B.1-29) and can therefore be computed in the order of Nlog 2N

operations. The total workload to compute all bands in the

approximation is therefore of order m2 Nlo02N.

In practice the complex transforms implied by Eqs.
B.2-25 and B.2-29 are replaced by real transforms. This amounts

to replacing the complex DFT matrix F in Eq. B.2-5 by the real

DFTI matrix HF where

H = I O H2  (B.2-32)
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is a complex n 1n2 xnln2 matrix, and Hl, H2 are equal to the

matrix H defined in Appendix A (Eq. A.3-2) for n = nI , n2.

Similarly, Ft is replaced by FtHt so that Eq. B.2-5 is formal-

ly identical to Eq. A.3-1. The result is that the banded blocks

of T' have the structure described for the one-dimensional

case in Appendix A.

B.3 APPROXIMATE SOLUTION OF BLOCK TOEPLITZ EQUATIONS

B.3.1 Fast Multiplication

There are two possible ways to obtain a "fast" multi-

plication algorithm for block Toeplitz matrices, both of which

are of order Nlog 2N in complexity. The simplest method is the

application of fast convolution (Section B.I.2) to the circulant

matrix T (Eq. B.2-9) as described in Ref. 10 for one dimension.

This method is rejected here since experience with the one-

dimensional algorithm has shown that estimation errors are

poorly behaved with this technique. The reason is that the

consistency in the statistical modelling (Ref. 13), which im-

plicitly defines the relation between the estimates and the

data, is destroyed if the auto-covariance is band-approximated

(see Section B.3.2) and the cross-covariance is not.

Therefore, it is assumed that the matrix to be multi-

plied is replaced by its block-banded approximation. A straight-

forward block-banded multiplication algorithm then requires on

the order of m2N operations, in addition to computing the approx-

imation, since the total number of non-zero elements in a row
is 2ms . The workload is thus still dominated by mNI0 2N.
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B.3.2 Fast Inversion of Separable Matrices

Consider the linear system

y = T x (B.3-1)

where T is block Toeplitz of dimension nln 2xnIn 2 . Its fre-

quency domain counterpart is

y T'x' (B.3-2)

where

y' = A X x = Ax

Tv = A T At 
(B 3-3)

and A is the transformation matrix defined by

A = H F W (B.3-4)

where H, F, and W are defined in Section B.2. The solution of

Eq. B.3-1 for x reduces to the solution of Eq. B.3-2 for x'.

If T is separable and symmetric then from Eq. B.2-18

y' = (Ti ® T ) x' (B.3-5)

or using Eqs. B.1-1O and B.1-11

2 (T - (H) (Ty) (B.3-6)

X' (Tj)_ Y'(T i ) _ (B.3-7)

where x', Y' are the row-wise elements of the nIxn 2 matrices

X1, N' Equation B.3-7 can be further expanded to two simple
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matrix inversions

V1 = (T')-I(Y')T
2 (B.3-8)

X' = (Ti)'(VI)T

Since T T are one-dimensional transforms of Toeplitz

matrices they may be replaced by their banded approximations

and inverted by the Cholesky method as described in Appendix

A. However, the right-hand-sides of Eq. B.3-8 are now matrices,

resulting in a workload for both equations of order

q = mBn 2 (mB+nl) + mBnl(mB+n 2 ) (B.3-9)

where mB is the bandwidth of the approximation. if nI = n2
then q is of order 2m BN.

B.3.3 Iterative Solution for Nonseparable Matrices

When the matrix T is not separable the transform T'

cannot be expressed as a Kronecker product. However, there

exists a natural approximation to T which is separable, and

may be used as the basis for an iterative technique. If T is

a symmetric block Toeplitz matrix (Eq. B.2-1) it is defined by

the sequence of vectors

1k = [t(n2_]), k  tok, . n21,k]T (B.3-10)

which in turn define the blocks Tk for k 0, 1, .... n1 -1.

The matrix T is separable if

k S kto (B.3-11)
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since then T = So0 T where S is a symmetric Toeplitz matrix
0 0 0

defined by the vector

S 1'l's, S i (B.3-12)
-0 n

A natural Kronecker approximation is obtained by choosing sk =

tok/too. With this choice the approximation agrees with T

identically for the main diagonal block Tot and for the main

diagonal within each block Tk. The error in the approximation

is determined by Eq. B.3-11.

Let D = S o TS and express T as

T = D+ E

where E is the error in the separable matrix approximation.

Since T and D are Toeplitz so is E, being defined by the

vectors

-k -k Sk-o (B.3-13)

The transformed linear system (Eq. B.3-2) becomes

- = (D' + E') x' (B.3-14)

whe-re D' is the Kronecker product SI T, and E' = T' -D'
0

An iterative solution to Eq. B.3-14 can be based on

the identity

-l
x1 = (D') [1 ' - E'x'I (B.3-15)

which leads to the recursion
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x'(k+l) (D')-I1 ' E' x'(k)] (B.3-16)

where k is the iteration step number and x'(0) is any conven-

ient initial solution (perhaps the zero vector). Since D' may

be inverted in order mBN operations from Section B.3.2, and

the multiplication by E' carried out in order m2N from Section

B.3.1, the workload represented by Eq. B.3-16 is of order msmBN

where ms is the number of iteration steps.

Iterative methods for linear systems are discussed in

Ref. 12. The recursion, Eq. B.3-16, converges to the solution

x' of Eq. B.3-14 if the approximation D' is sufficiently close

to T'. Let

6x'(k) = x'(k)-x' (B.3-17)

be the error in the kth iterate. Then

6x'(k) = Mk 6x'(0) , = (D')-IE' (B.3-18)

and the iteration converges if any matrix norm of M is less

than one, in particular if the eigenvalues of M are all less

than one in absolute value. An expression for the convergence

rate in terms of the number of steps, m s , required to reduce

the initial error by 10"0 is given by

Ms  Og 0 p p = max I Ai(M)t (B.3-19)

where XW(M) denotes the eigenvalues of the matrix M. For a

useful algorithm ms should be less than 10 when P = 2.

Since both T' and D' are normally symmetric and posi-

tive definite, a simpler convergence criterion is (Ref. 12) that
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(2D'-T') a D'(I-M) (B.3-20)

is a positive definite matrix. This holds when the Toeplitz

matrix (2D-T) is itself positive definite, or in particular if

maxiki(T)< 2 minlXi(S°)l'. minlAi(T°)l (B.3-21)

since D is a Kronecker product. In this case the rate of con-

vergence can be estimated using Eq. B.3-19 and the inequalities

min Aj(T)I /max ikj(D)j < I + Ai(M) < max IAj(T)I/min IAj(D) I

(B.3-22)

The convergence of the iteration can be guaranteed,

and an optimum rate of convergence obtained, by introducing a

relaxation parameter, a. Let D = a-iD where Do = So GT 0 and

a is a positive real number. Then (2D-T) is a positive-definite

matrix for sufficiently small a so that convergence is assured.

Substitution shows that Eq. B.3-16 can be rewritten

x'(k+l) x'(k) + a(D'- y - T'x'(k)] (B.3-23)

which is in the form of a relaxation iteration.

Analysis of the convergence rate of Eq. B.3-23 shows

that the optimum choice of a is given by

ao = 2(ql + q2 )
1  (B.3-24)

where q1 and q. are the smallest and largest eigenvalues of

(D- T). The q's may be estimated from upper and lower bounds

for the real, positive ratio xTTx/xTD0 x. The convergence fac-

tor corresponding to Eq. B.3-24 is given by
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PO= (q2  " ql)/(q 2  + ql) (B.3-25)

which is less than one for any T, and reaches zero in the

separable case T = Do . The number of steps required to reduce

the error by a factor of 100 (see Eq. B.3-19) is less than ten

when the condition number of (DolT), given by q/ql, is less

than about five. Furthermore, it can be shown that the number

of steps increases linearly with the condition number.
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